Solve the problem.

1) A wild animal preserve has a rate of growth of

$$
\frac{\mathrm{dP}}{\mathrm{dt}}=0.0005 \mathrm{P}(190-\mathrm{P})
$$

where t is time in years.
a) Find $\lim P(t)=$
b) Determine the population when $\mathrm{P}(\mathrm{t})$ is growing the fastest.
2) A particle moves along the x-axis (units in cm). Its initial position at $t=0 \sec$ is $x(0)=10$. The figure shows the graph of the particle's velocity $\mathrm{v}(\mathrm{t})$. The numbers are the areas of the enclosed regions.

a) What is the particle's displacement between $t=0$ and $t=c$?
b) What is the particle's total distance traveled between $t=0$ and $t=c$?
c) Give the positions of the particle at times a, b, and c .
d) At which coordinate(s): a, b, or c , does the particle have a negative acceleration?

The function $v(t)$ is the velocity in $m / s e c$ of a particle moving along the x-axis. Find the total distance traveled by the particle. Show all your work in finding the total distance traveled
3) $v(t)=58.8-9.8 t, 0 \leq t \leq 24$

Solve the problem.

4) The velocity in $\mathrm{m} / \mathrm{sec}$ of a particle moving along the x - axis is given by the function $\mathrm{v}(\mathrm{t})=\sqrt{\mathrm{t}}, 0 \leq \mathrm{t} \leq 9$. Find the particle's position at time $\mathrm{t}=4$ assuming the particle starting position is $\mathrm{s}(0)=5$. Show all your work in finding the solution.
5) The rate at which your home consumes electricity is measured in kilowatts. If your home consumes electricity at the rate of 1 kilowatt for 1 hour, you will be charged for 1 "kilowatt- hour" of electricity. Suppose that the average consumption rate for a certain home is modeled by the function $C(t)=4.1-2.5 \sin (\pi t / 12)$, where $C(t)$ is measured in kilowatts and t is the number of hours past midnight. Find the average daily consumption for this home, measured in kilowatt- hours. Set up your integral and use your calculator to find the answer.
